PHYSICAL REVIEW E VOLUME 62, NUMBER 4 OCTOBER 2000

Multispecies reaction-diffusion systems
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Multispecies reaction-diffusion systems, for which the time evolution equations of correlation functions
become a closed set, are considered. A formal solution for the average densities is found. Some special
interactions and the exact time dependence of the average densities in these cases are also studied. For the
general case, the large-time behavior of the average densities has also been obtained.

PACS numbsefs): 82.20.Mj, 02.50.Ga, 05.46.a

I. INTRODUCTION For some special choices of the four matrices we also give
the explicit form of the interactions and the exact time de-

In recent years, reaction-diffusion systems have beependence of the average densities. At the end, we study the
studied by many people. As mean field techniques generalllarge-time behavior of the average densities of different spe-
do not give correct results for low-dimensional systemsgies for the general case.
people are motivated to study stochastic models in low di-
mensions. Moreover, solving one-dimensional systems  Il. A BRIEF REVIEW OF LINEAR STOCHASTIC
should in principle be easier. Exact results for some models SYSTEMS

in a one-dimensional lattice have been obtained, for ex- To fix th ) din thi icle. h briefl
ample, in[1—-10]. o fix the notation used in this article, here we briefly

Different methods have been used to study these modelgewew the already well known formalism of linear stochastic
including analytical and asymptotic methods, mean fieldSYStems. The master equation ®a.t) is
methods, and large-scale numerical methods. Systems with

more than one species have also been stydi#d22. Most —P(o,t)= 2 [w(7—0)P(7,t)—w(oc—7)P(0,t)],

of the arguments are based on simulation results. There are, THT

however, some exact results as w§l18,20,23, for ex- Y
ample.

wherew(7— o) is the transition rate from the configuration

In [23], a ten-parameter family of stochastic models has T t0 0. Introducing the state vector

been studied. In these models, theoint equal time corre-
lation functions(n;n; . . .ny) satisfy linear differential equa-
tions involving no higher-order correlations. These linear |P>=E P(o,t)|o), 2
equations for the average densjty) have been solved, but 7

this set of equations cannot be solved easily for higher- Ord%here the summation runs over all possible states of the

correlation functions. We have generalized the same idea t gystem, one can write the above equation in the form
multispecies models. We have considered general reaction-

diffusion processes of multiple species in one dimension d

with two-site interaction. We have obtained the conditions &|P)=H|P>, (3)
the Hamiltonian should satisfy in order to give rise to a

closed set of time evolution equations for the correlationhere the matrix elements 6 are

functions. The set of equations for average densities can be

written in terms of four matrices. The time evolution equa- (o|H|T)=w(1—0), T#0,

tions for more-point functions, besides these four matrices, (4)
generally depend explicitly on the elements of the Hamil-

tonian, and generally cannot be solved easily. These matrices (alH|o)=— ZJU w(oc—T).

are not determined uniquely from the Hamiltonian: there is a
kind of gauge transformation one can apply on them whichspe basis{(c|} is dual to{|o)}, that is,
of course, does not change the evolution equation. A formal

solution for average densities of different species is found. (o|7)=8,,. (5)
The operatofH is called a Hamiltonian, and it is not neces-
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TEmail address: fath@iasbs.ac.ir
*Email address: mamwad@iasbs.ac.ir 2 P(o,t)=1 (6)

$Email address: shahram@iasbs.ac.ir

1063-651X/2000/6@)/46428)/$15.00 PRE 62 4642 ©2000 The American Physical Society



PRE 62 MULTISPECIES REACTION-DIFFUSION SYSTEMS 4643

shows that where |P(t)):=exptH)|P(0)) represents the state of the
system at the timé
(SH=0, (7)
(S|=(s|® ...®(s|, (15)
where \-—Lf——J
and
<5|:% (Bl 8 (s]s=(11...1). (16)
N

So the sum of each column &f, as a matrix, should be zero. ) ) o~

As (S| is a left eigenvector of{ with zero eigenvaluek{ has SO the time evolution ofni®) is given by

at least one right eigenvector with zero eigenvalue. This state d

corresponds to the steady state distribution of the system and d—<”ia>:<3|”iaH| P(t)). (17)

it does not evolve in time. If the zero eigenvalue is degener- t

ate, the steady state is not unique. The transition rates are o .

non-negative, so the off-diagonal elements of the matix The only terms of the Hamiltoniai that are relevant in the

are non-negative. Therefore, if a matfikhas the properties aPOVe equation arel; ;. andH;_;. The result of acting
any matrixQ on the ket(s| is equivalent to acting the diag-

(SI’H=0, onal matrixQ on the same ket, provided each diagonal ele-

(9 ment of the matrixQ is the sum of all elements of the cor-
responding column in the matri®. So the actions of (1

then it can be considered as the generator of a stochastjg" JH and 1*®1)H on(s|(s| are equivalent to the ac-

process. It can be proved that the real part of the eigenvaluég’n of two diagonal matrices ofs|®(s|. We use the nota-

of any matrix with the above conditions is less than or equafIon ~ for the equivalent action ofs|®(s:

(o|H|7)=0,

to zero.

The dynamics of the state vectd® is given by (1® n“)H~Z Agynﬁc@ n?,

By

|[P(t))=exptH)|P(0)), (10 (18)

and the expectation value of an observablés (n“® 1)H~; A% nPan?,

Y

(O)(t)="2, O(c)P(o,t)=(S|OexptH)|P(0)). where A4, and A3, are
(11

a Na
“4/37'_; HBW
IIl. MODELS LEADING TO A CLOSED SET

OF EVOLUTION EQUATIONS (19
) ) ) Za ::2 Ha)\.
The models that we address are multispecies reaction- By &4 T By
diffusion models. That is, each site is a vacancy or has one
particle. There are several kinds of particle, but at any time athen, Eq.(17) takes the form
most one kind can be present at each site. Suppose the inter-
la;(;ﬂ)onnallls;/?r?\t/g;aizrrwlt,nearest neighbors, and the system is trans <”ia>:% Agy<ni'8—1”i7>+v4gy<”iﬁ”iy+1 . (20)

Generally, in the time evolution equation &fi“) the two-
point functions(nn?) appear. Using Eq.13), one can see
that if and only if 4 and.A satisfy the following equations,

The number of sites ik and the number of possible states in then the right hand side of E€R0) can be expressed in terms
a site isN; different states of each site are denoted byof only one-point functions:

A,, a=1,...N, where one of the states is a vacancy. In-
troducingn{® as the number operator of tide, particle in the Az, + AN AR, — An=0,
sitei, we have (22

A%+ Al — AR — A%, =0.

L
Hzgl Hiita (12

N
azl =1 13 These equations give R(—1)% constraints on the Hamil-

tonian, so adding the condition of stochasticity-hfwe have
The average number density of the partislein the sitei at ~ 2(N—1)3+N?2 relations between the elements bf The
the timet is constraintg21) mean

() =(SIn{'[P(1)), (14 A =Cs—BY,
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As =—BS+DY. 22
So Eq.(17) takes the form ; Ri{’:% Rc;fzoy (28)
N
<'."i“>:ﬁzl [ (Bg+BE(nf)+Cxnf_ ) +Dg(nf 1)]. these two Hamiltonians give rise to the sameand A. Re-

23 garding one-point function&;*), these models are the same.
So we call these models equivalent regarding one-point func-
In the simplest case, of one species, each site is vacant §ens. . o .
occupied by only one kind of particles. Then the matriBes However, A and A do not determineB, C, B, and D
C, B, andD are two dimensional. Using E€L3), the equa-  uniquely. The stochastic condition
tion for (nl) is

. _ _ > Hyf=0 (29
(nf)=(-B1—-B1+B3+B3)}(n})+(C1—Cy)(ni_,) o
+(DE-D3)(nk, )+ (—-Bi-Bl+Cl+DD). results in some constraints @ C, B, andD:
(24)

B . . . o 2 (C3-B})=0,
This is a linear difference equation of the kind obtained in @
[23], and its solution can be expressed in terms of modified (30
Bessel functions. Ba na

. . . . . -B3+D%)=0.
The time evolution equation for two-point functions can ; (=B+Dy)

also be obtained:
Thus the sum of all elements of any columnB{fC) should

N be the same:

d —

ar(nnf)=2 [~ (B+B)(nf)+Cny nf)
_ > C=2 Bi=f. (31)
a R/ a p” B —~ B
+D5(n?.nf)—(BL+BE)(nin?)
+C€<ni‘1nj)/—1>+5€<nianj7+1>]i li—j|>1, Then the statés| is the left eigenvector a8 andC, with the

same eigenvalug B andD also have the same property, of
(29 course with different eigenvalug
ChangingB and C according to thegaugetransformation

d - _
— (n®np — _Rpa B _pB/nra
dt(”i ”i+1>—27 [—BXnn7 ) — BNy, Cj—C'g=Cs—f* or C'=C—|f)s|,
_ (32
+Cyny_ynf ) DN, )] B;—B'4=Bj—f* or B'=B-—|f)s|
o does not changel. With a suitable choice of*,
+3 Hi(nn ). (26 ’
. _ . > fo=ft, (33
For more-point functions, one can deduce similar results. In @

fact, it is easy to show that if the evolution equations of
one-point functions are closed, the evolution equations ofhe sum of the elements of any columnB®br C can be set
n-point functions contain only- and fewer-point functions. t0 zero. In this gauge, the eigenvaluesBand C for the
However, generally these sets of equations cannot be solvetigenvectos| will be zero.
easily.
V. ONE-POINT FUNCTIONS
IV. EQUIVALENT HAMILTONIANS REGARDING ONE-

To solve Eq.(23), we introduce the vectaN, :
POINT FUNCTIONS AND GAUGE TRANSFORMATIONS

1

Knowing B, C, B, andD does not determine the Hamil- ()
tonian uniquely, but as is seen from Hg3) the time evo- (nﬁ)
lution of one-point functions depends only & C, B, and .
D. The two- and more-point functions depend explicitly on Nic= . : (34
the elements of. So different Hamiltonians may give the
same evolution fofn*). Take two Hamiltonian$! andH’. ’
Defining (ng)

R:=H—-H’, (27) Equation(23) can then be written as
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Ni=—(B+B)Ny+CN_1+ DN . (35)
Introducing the generating functid@a(z,t),
G(zt)=2 M(t)Z", (36)
one arrives at
G(zt)=[—-(B+B)+zC+z D]G(zt), (37
the solution to which is
G(z,t)=exp{t[— (B+B)+zC+z 'D]}G(z,0). (38

The N (t)'s are the coefficients of the Laurent expansion of

G(zt), so

N(t)=— édzi“ k=1 exp{t[ — (B+B)+zC

2|m_

+Z2 ID]IN;(0). (39)

This is the formal solution of the problem, which is of the

form

Nd©)= 2 Tin(DNn(0)- (40)
A. Some special cases
We now consider special choices By C, B, andD.
1. The matrices B, C, Band D are two dimensional
(the single-species case)

We can use the gauge transformation to make the

simultaneous null left eigenvector 8f C, B, andD. In this
gauge, one has

B=[u)(bl,

=[u)(cl,
_ _ (41)
B=|u)(bl,
=[u)(d|,
where
1
|u>::< _1>. (42

This means that it is orthogonal (el and is a simultaneous

right eigenvector oB, C, B, andD. Using Eq.(41), one can

easily calculate the exponentlal in E89):

eld@ 1

T|U><9(Z)|,
(43)

exp{t[— (B+B)+zC+z D]}=1+

where
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9(2)|:=—(b|—(b|+z(c|+z X(d| (44)

and

9(2):=(g(2)|u). (45)

Now take(v| and|w) to be the left eigenvector of B—B
+C+D dual to|u) and the right eigenvector of B—B

+C+D dual to(s|, respectively. One can normalize these,
so that

(v|uy=1,
(46)
(slwy=1.
Of coursev| is orthogonal tdw). Then,
exp{t[ — (B+B)+zC+z D]}
=e'9@u)(v|+[w)(s|+(g(2)|w)
etg(z)_

e @7

—luXsl.
Acting this on,(0), andnoting that
(sINm(0)=1, (48)

it is seen that

1 o0
N =[WX(SIN(O)+ 5 5 gﬁdzznfkfl

X €'9@]u)(v|Nin(0)

IW>+— »

Tl m=—w

fﬁ dzZ" % 1el9@|u) (v | Nip(0),
(49

or

_2 jgdzz’“’k’le‘g(z)|u)(vINm(O).
(50)

(v|Ng(t)= 5

This is equivalent to Eq(24).
2. The case &pB, B=q§
Using Eq.(22),
(1-p)(s|B=(1-a)(s|B=0, (51)

means thap=1 or(s|B=0, andq=1 or(s|§—0 If (s| is
not the left null elgenvector oB andB, thenp=qg=1. So

we will haveB=C andD =B. Now we use the definition of
A!

a _ ~a a__ Na
ABV_CB_CV_; Higy
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A@, A21
A%, =C*—C%=D, H. 52
7B Y B ; A ( ) @A—) AA, U_A21
@@, U_A21- (59)

For a# B and a# vy, all the terms in the right hand side

summations in the above equations are reaction rates aRghe gpove system, with no diffusion, was studied 24].
should be non-negative, but the sum of the left hand sides Bnere, then-point functions were investigated. This solution

zero. So can be generalized to the multispecies case.d=6|3,
Cg=Ci=f* for y#a#p. (53 AgAs, Agp.aB=1,...N
All the elements of each row except the diagonal elements of Achg—| Adhar U Aap
C (or B) are the same. That is, AgAg, v—A.p. (60)
C=|f)(s|+C’, (54) 'rl';[zsgnly constraint is the non-negativeness of the reaction

whereC’ is some diagonal matrix. The fact tha} is a left
eigenvector ofC shows that it should be a left eigenvector of

c .as wsall, and this demands’ to be proportlcmal to_the This model hat\(N— 1)+ 2 free parameters. However, only
unit matrix. One can make the same argumentsfandD.  {he two parametersi and v appear in the time evolution

So, after gauge transformation, equation of average densities:

u=A,z=0, v=A,=0. (61

C=B=ul, D=B=ul (55) (== (u+o)(nH+u(n® ) +u(nty). (62

Although the time evolution of average densities can be writ-As is seen, the dynamics of average densities of different
ten in terms ofB, C, B, andD, the HamiltonianH is not  particles decouple, and despite the complex interactions of
uniquely be determined by these matrices. There exist differthe model, the(hi“ys can be easily calculated. But in the
ent Hamiltonians which are equivalent, regarding one-pointime evolution of two-point functions ,;'s appear as well.
functions: So, although models with different exchange ratés, 4)
and the same initial conditions have the same average den-
iti heir two-point function nerally are not th me.
> Hﬁf‘/:Azy:U(5E—5§), sities, their two-point functions generally are not the same
A _
(56) 3. B,B,C,D commute

N 0 e Generally, the gauge transformation do not preserve the
> Higy=Agy=v(8,= p).

A commutation relation oB andC (and that ofganda). But
if B and C commute, there is a gauge transformation that

All the elements of the3 column of H are zero. Fora  leaves the transforme8landC commuting. If we choosff)

# 3, the elements oH satisfy to be a right eigenvector @ and C dual to(s|, that is,
e B|f)=C|f)=f|f), (63)
Y HMH+HX+HA =, , )
N#a.B thenB’:=B—|f)(s| andC':=C—|f)(s| commute. If
S MM HIHE= S ©
N #a, . . . = -
g (57) then(s| timesB’ andC’ will be zero. So, ifB, C, B, andD
commute with each other, there exists a suitable gauge trans-
> H§z+ H§g+ Hggzv, formation that makes their eigenvalue correspondingsto
N aB zero, while they remain commuting:

s|B=(s|C=(s|B=(s|D=0. 65
Mk Denote the matrix that simultaneously diagonalizes these

. . four matrices byU, diagonalized matrices by primes, and
In general, these sets of equations have several solutions, but Y gonallz yp

for the one-species case the reaction rates are the foIIowinEhf:“air eigenvalues bp®, c“, b® andd®, respectively. We
ave

DA, A,
AT —1{ AA, U_A12
B, v— A, (58 (Q)=(s|U. 66)

(Q|B'=(Q|C'=(0|B'=(Q|D'=0,
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We takebN=cN=bN=d"=0, and normalizé | andU so
that

(Q[=(00---00) (67)

and

> Uup=0ngs- (68)

U will also diagonalize the exponential in E(B9). So we
have

1
/\Fk(t)— _2; dzZ" %! exdt{—B'—B’+zC’
+z D'} IN(0), (69)
where
N(0):=U"NG(1). (70

The matrix in the argument of the exponential in E8P) is
diagonal, so the integral can be easily calculated:

1 _ _
Ti=5— fﬁ dzZ" kK texgt(—b*—b*+zc*+z 1d¥)].
(77)

Introducingw:=+/(d“/c“z), one arrives at

ge\| (M2 -t(b*+bY

T:= —) %dwvxﬁ1 k=1 exg \cdt
Ca
X (wH+w ], (72

which can be written in terms of modified Bessel functions

I::

de (m—k)/2 .
—) et (2\crdt). (73

C(l

Then,
« =B\ (M—k)/2 B
> Udiag{(d—ﬁ) et +bh)

X1 km(Z\/CﬁEBt)] U~ Nm(0).

Note that the right-hand side of Er3) is 6y for «=N,
since theNth eigenvalue o8B, C, B, andD is zero.

(74

One can start with four special dlagonal matrices and then
construct the Hamiltonians with different reaction-diffusion
rates. Not all diagonal matrices lead to physical stochasti
models: negative reaction rates may be obtained. Consider->
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Re(b*+b%) =0 (76)
Now, we consider a special choice for
Ug=36n—(1-6Y)35. (77
Then
Bs=bg(d5—oN),
Ch=cp( 55— 50,
_ (79
Bj=bu( 55— 8%
Dy=dg( 85— o).
Now, consider
Ajgy= 2 Hfy= —b83+ 95+ (b, +cp) 8y (79)
For a# vy anda# B,
2 Hp=0, X Hig= (80)
So, takingB,y#N and a=N,
br=c”. (82)
The same reasoning is true for andd?:
bY=d”. (82)

Here, too, as in the previous example, the above choices for

B, C, B, andD do not determing uniquely. One particular
solution for the reaction rates is, far# N,

AaAN! ANa
ANAa_> ACYAC“ Ea_ANa
ANAN, B A, (83
ANADZ' AaN
AaAN*) AaAcw Ca_AaN
ANAN, Ea_AaN , (84
and, fora,B#N,
AD(AN' bﬁ_ca_Aa,B
AaAﬁ_> ANAB! HQ_EIB_AQB
ANAN,  Agp. (85

r a# B, the following reactions may also occur. Far

ing the large-time behavior of average number densities, one

can show that

|Re(Vced®)|<Re(b*+b*),

which also shows that

(75

AgA,, C,

Ral\p A A
B E,

—c,+dg (86)

and fora> B
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AgA,, EB These can be put directly in EGZ4).
AaAB_> J—
AdPas C,—dg. (87)  vI. LARGE-TIME BEHAVIOR OF AVERAGE DENSITIES
The constraint of non-negativeness of the reaction rates leads The large-time behavior of the system is deduced through
to a steepest-descent analysis of the formal solutg®h. One
should consider the eigenvalues and the eigenvectors of the
Ca=dg=Cy, a<p<y, z-dependent matrix
0=<Ap=<bg—c,, M(2):=—(B+B)+zC+z D. (93)
Aup=<b,—dg, Denote the eigenvalues of this matrix BY(z). As for any
o value ofz, the matrixM has(s| as its left eigenvector corre-
0<Apn,<d,, (89 sponding to the eigenvalue zero, and it will have a right
eigenvectotw) dual to(s|. |w) is zdependent, but one can
0<Ay,=<b,, normalize it so that
0<A <Dy, (slw(2))=1. (94)
The fact that\ should not blow up at— assures that the
0=<A n=C,

real parts of the eigenvalues df(z) are nonpositivéat least

o for |zZl=1). If all the other eigenvalues have negative real

4. Type-change invariance . X
parts, then at—o only |w) survives. That is,

SupposeB, C, B, andD have the property L

B,ZH:BE' (89) ./\/k(OO)=2—7Ti§ é dZin_k_l|W(Z)><S|Nm(0):|W(1)>'
95

and the same for the other three matrices. Note that the in- ©3

dices of these matrices are defined periodically, so that We have useds|N;,(0)=1. This could also be obtained

+a, as an index, is gquwalent . Thls is in fact a special directly, using the evolution equatiof23), by setting AV,

case of the commuting matrices discussed earlier. One Cafhual to zero and assumind, independent ok. So the final

u§e Eq.(74). To do S0, one SEOUId know the smultangousstate of the system is the eigenvectorﬂ(B+§)+C+5,
eigenvectors ofB, C, B, and D, and their corresponding corresponding to the eigenvalue zero.

eigenvalues. It is not difficult to see that the eigenvectors are T investigate the next-to-leading termtat e, consider

1 i27af the other eigenvalues dfl(z). Suppose that at=2zj\“ is
ng—exp{ ) (90) stationary. There may be more than one point having this
\/N property. So we will have a set consistingzgf,’s. Each of

. ) these points corresponds to a stationary eigenvafye We
The carresponding eigenvectors Bifor example, are choose thatg, for which the corresponding eigenvalue has
i2maf the largest real part. Denote this point iy its correspond-
b3=2 Bg exp( TN ) (91 ing stationary eigenvalue hy,, and its corresponding right
“ eigenvector byv,). The next-to-leading term i is then

N

Finally, the matrix elements of the inverse Wfare N~ k6o o). (96
1 i2map . . .
(U hH2=——exp — _ (92) Note thatz, is not necessarily a phase; its modulus may be
P JIN N different from 1.
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