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Multispecies reaction-diffusion systems

A. Aghamohammadi,1,2,* A. H. Fatollahi,2,3,† M. Khorrami,2,3,‡ and A. Shariati2,3,§

1Department of Physics, Alzahra University, Tehran 19834, Iran
2Institute for Studies in Theoretical Physics and Mathematics, P.O. Box 5531, Tehran 19395, Iran
3Institute for Advanced Studies in Basic Sciences, P.O. Box 159, Gava Zang, Zanjan 45195, Iran

~Received 31 May 2000!

Multispecies reaction-diffusion systems, for which the time evolution equations of correlation functions
become a closed set, are considered. A formal solution for the average densities is found. Some special
interactions and the exact time dependence of the average densities in these cases are also studied. For the
general case, the large-time behavior of the average densities has also been obtained.
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I. INTRODUCTION

In recent years, reaction-diffusion systems have b
studied by many people. As mean field techniques gener
do not give correct results for low-dimensional system
people are motivated to study stochastic models in low
mensions. Moreover, solving one-dimensional syste
should in principle be easier. Exact results for some mod
in a one-dimensional lattice have been obtained, for
ample, in@1–10#.

Different methods have been used to study these mod
including analytical and asymptotic methods, mean fi
methods, and large-scale numerical methods. Systems
more than one species have also been studied@11–22#. Most
of the arguments are based on simulation results. There
however, some exact results as well~@18,20,22#, for ex-
ample!.

In @23#, a ten-parameter family of stochastic models h
been studied. In these models, thek-point equal time corre-
lation functionŝ ninj . . . nk& satisfy linear differential equa
tions involving no higher-order correlations. These line
equations for the average density^ni& have been solved, bu
this set of equations cannot be solved easily for higher-o
correlation functions. We have generalized the same ide
multispecies models. We have considered general reac
diffusion processes of multiple species in one dimens
with two-site interaction. We have obtained the conditio
the Hamiltonian should satisfy in order to give rise to
closed set of time evolution equations for the correlat
functions. The set of equations for average densities ca
written in terms of four matrices. The time evolution equ
tions for more-point functions, besides these four matric
generally depend explicitly on the elements of the Ham
tonian, and generally cannot be solved easily. These mat
are not determined uniquely from the Hamiltonian: there i
kind of gauge transformation one can apply on them whi
of course, does not change the evolution equation. A for
solution for average densities of different species is fou
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For some special choices of the four matrices we also g
the explicit form of the interactions and the exact time d
pendence of the average densities. At the end, we study
large-time behavior of the average densities of different s
cies for the general case.

II. A BRIEF REVIEW OF LINEAR STOCHASTIC
SYSTEMS

To fix the notation used in this article, here we briefl
review the already well known formalism of linear stochas
systems. The master equation forP(s,t) is

]

]t
P~s,t !5 (

tÞs
@v~t→s!P~t,t !2v~s→t!P~s,t !#,

~1!

wherev(t→s) is the transition rate from the configuratio
t to s. Introducing the state vector

uP&5(
s

P~s,t !us&, ~2!

where the summation runs over all possible states of
system, one can write the above equation in the form

d

dt
uP&5HuP&, ~3!

where the matrix elements ofH are

^suHut&5v~t→s!, tÞs,
~4!

^suHus&52 (
tÞs

v~s→t!.

The basis$^su% is dual to$us&%, that is,

^sut&5dst . ~5!

The operatorH is called a Hamiltonian, and it is not nece
sarily Hermitian. Conservation of probability,

(
s

P~s,t !51, ~6!
4642 ©2000 The American Physical Society
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shows that

^SuH50, ~7!

where

^Su5(
b

^bu. ~8!

So the sum of each column ofH, as a matrix, should be zero
As ^Su is a left eigenvector ofH with zero eigenvalue,H has
at least one right eigenvector with zero eigenvalue. This s
corresponds to the steady state distribution of the system
it does not evolve in time. If the zero eigenvalue is degen
ate, the steady state is not unique. The transition rates
non-negative, so the off-diagonal elements of the matrixH
are non-negative. Therefore, if a matrixH has the properties

^SuH50,
~9!

^suHut&>0,

then it can be considered as the generator of a stoch
process. It can be proved that the real part of the eigenva
of any matrix with the above conditions is less than or eq
to zero.

The dynamics of the state vectors~3! is given by

uP~ t !&5exp~ tH!uP~0!&, ~10!

and the expectation value of an observableO is

^O&~ t !5(
s

O~s!P~s,t !5^SuO exp~ tH!uP~0!&.

~11!

III. MODELS LEADING TO A CLOSED SET
OF EVOLUTION EQUATIONS

The models that we address are multispecies react
diffusion models. That is, each site is a vacancy or has
particle. There are several kinds of particle, but at any tim
most one kind can be present at each site. Suppose the
action is between nearest neighbors, and the system is t
lationally invariant,

H5(
i 51

L

Hi ,i 11 . ~12!

The number of sites isL and the number of possible states
a site is N; different states of each site are denoted
Aa , a51, . . .N, where one of the states is a vacancy.
troducingni

a as the number operator of theAa particle in the
site i, we have

(
a51

N

ni
a51. ~13!

The average number density of the particleAa in the sitei at
the timet is

^ni
a&5^Suni

auP~ t !&, ~14!
te
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where uP(t)&ªexp(tH)uP(0)& represents the state of th
system at the timet,

~15!

and
~16!

So the time evolution of̂ni
a& is given by

d

dt
^ni

a&5^Suni
aHuP~ t !&. ~17!

The only terms of the HamiltonianH that are relevant in the
above equation areHi ,i 11 and Hi 21,i . The result of acting
any matrixQ on the ket̂ su is equivalent to acting the diag
onal matrixQ̃ on the same ket, provided each diagonal e
ment of the matrixQ̃ is the sum of all elements of the co
responding column in the matrixQ. So the actions of (1
^ na)H and (na

^ 1)H on ^su ^ ^su are equivalent to the ac
tion of two diagonal matrices on̂su ^ ^su. We use the nota-
tion ; for the equivalent action on̂su ^ ^su:

~1^ na!H;(
bg

A bg
a nb

^ ng,

~18!

~na
^ 1!H;(

bg
Ābg

a nb
^ ng,

whereA bg
a andĀbg

a are

A bg
a
ª(

l
Hbg

la ,

~19!

Ābg
a
ª(

l
Hbg

al .

Then, Eq.~17! takes the form

^ṅi
a&5(

bg
A bg

a ^ni 21
b ni

g&1Ābg
a ^ni

bni 11
g &. ~20!

Generally, in the time evolution equation of^na& the two-
point functions^nbng& appear. Using Eq.~13!, one can see
that if and only ifA and Ā satisfy the following equations
then the right hand side of Eq.~20! can be expressed in term
of only one-point functions:

A bg
a 1A NN

a 2A Ng
a 2A bN

a 50,
~21!

Ābg
a 1ĀNN

a 2ĀNg
a 2ĀbN

a 50.

These equations give 2(N21)3 constraints on the Hamil-
tonian, so adding the condition of stochasticity ofH, we have
2(N21)31N2 relations between the elements ofH. The
constraints~21! mean

A bg
a 5Cb

a2Bg
a ,
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Ābg
a 52B̄b

a1D̄g
a . ~22!

So Eq.~17! takes the form

^ṅi
a&5 (

b51

N

@2~Bb
a1B̄b

a!^ni
b&1Cb

a^ni 21
b &1D̄b

a^ni 11
b &#.

~23!

In the simplest case, of one species, each site is vaca
occupied by only one kind of particles. Then the matricesB,
C, B̄, andD̄ are two dimensional. Using Eq.~13!, the equa-
tion for ^ṅi

1& is

^ṅi
1&5~2B1

12B̄1
11B2

11B̄2
1!^ni

1&1~C1
12C2

1!^ni 21
1 &

1~D̄1
12D̄2

1!^ni 11
1 &1~2B2

12B̄2
11C2

11D̄2
1!.

~24!

This is a linear difference equation of the kind obtained
@23#, and its solution can be expressed in terms of modifi
Bessel functions.

The time evolution equation for two-point functions ca
also be obtained:

d

dt
^ni

anj
b&5(

g

N

@2~Bg
a1B̄g

a!^ni
gnj

b&1Cg
a^ni 21

g nj
b&

1D̄g
a^ni 11

g nj
b&2~Bg

b1B̄g
b!^ni

anj
g&

1Cg
b^ni

anj 21
g &1D̄g

b^ni
anj 11

g &#, u i 2 j u.1,

~25!

d

dt
^ni

ani 11
b &5(

g

N

@2Bg
a^ni

gni 11
b &2B̄g

b^ni
ani 11

g &

1Cg
a^ni 21

g ni 11
b &1D̄g

b^ni
ani 12

g &#

1(
gl

Hgl
ab^ni

gni 11
l &. ~26!

For more-point functions, one can deduce similar results
fact, it is easy to show that if the evolution equations
one-point functions are closed, the evolution equations
n-point functions contain onlyn- and fewer-point functions
However, generally these sets of equations cannot be so
easily.

IV. EQUIVALENT HAMILTONIANS REGARDING ONE-
POINT FUNCTIONS AND GAUGE TRANSFORMATIONS

Knowing B, C, B̄, andD̄ does not determine the Hami
tonian uniquely, but as is seen from Eq.~23! the time evo-
lution of one-point functions depends only onB, C, B̄, and
D̄. The two- and more-point functions depend explicitly
the elements ofH. So different Hamiltonians may give th
same evolution for̂ni

a&. Take two HamiltoniansH andH8.
Defining

RªH2H8, ~27!
or

d

n
f
f

ed

if

(
a

Rgl
ab5(

b
Rgl

ab50, ~28!

these two Hamiltonians give rise to the sameA andĀ. Re-
garding one-point functionŝni

a&, these models are the sam
So we call these models equivalent regarding one-point fu
tions.

However, A and Ā do not determineB, C, B̄, and D̄
uniquely. The stochastic condition

(
ab

Hgl
ab50 ~29!

results in some constraints onB, C, B̄, andD̄:

(
a

~Cb
a2Bg

a!50,

~30!

(
a

~2B̄b
a1D̄g

a!50.

Thus the sum of all elements of any column ofB(C) should
be the same:

(
a

Cb
a5(

a
Bb

a5 f . ~31!

Then the statêsu is the left eigenvector ofB andC, with the
same eigenvaluef. B̄ andD̄ also have the same property, o
course with different eigenvalueg.

ChangingB andC according to thegaugetransformation

Cb
a→C8b

a5Cb
a2 f a or C85C2u f &^su,

~32!
Bb

a→B8b
a5Bb

a2 f a or B85B2u f &^su

does not changeA. With a suitable choice off a,

(
a

f a5 f , ~33!

the sum of the elements of any column ofB or C can be set
to zero. In this gauge, the eigenvalues ofB and C for the
eigenvector̂ su will be zero.

V. ONE-POINT FUNCTIONS

To solve Eq.~23!, we introduce the vectorNk :

NkªS ^nk
1&

^nk
2&

•

•

•

^nk
N&

D . ~34!

Equation~23! can then be written as
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Ṅk52~B1B̄!Nk1CNk211D̄Nk11 . ~35!

Introducing the generating functionG(z,t),

G~z,t !5(
2`

`

Nk~ t !zk, ~36!

one arrives at

Ġ~z,t !5@2~B1B̄!1zC1z21D̄#G~z,t !, ~37!

the solution to which is

G~z,t !5exp$t@2~B1B̄!1zC1z21D̄#%G~z,0!. ~38!

TheNk(t)’s are the coefficients of the Laurent expansion
G(z,t), so

Nk~ t !5
1

2p i (
m52`

` R dzzm2k21 exp$t@2~B1B̄!1zC

1z21D̄#%Nm~0!. ~39!

This is the formal solution of the problem, which is of th
form

Nk~ t !5(
m

Gkm~ t !Nm~0!. ~40!

A. Some special cases

We now consider special choices forB, C, B̄, andD̄.

1. The matrices B, C, B̄, and D̄ are two dimensional
(the single-species case)

We can use the gauge transformation to make^su the
simultaneous null left eigenvector ofB, C, B̄, andD̄. In this
gauge, one has

B5uu&^bu,

C5uu&^cu,
~41!

B̄5uu&^b̄u,

D5uu&^du,

where

uu&ªS 1

21D . ~42!

This means that it is orthogonal to^su and is a simultaneou
right eigenvector ofB, C, B̄, andD̄. Using Eq.~41!, one can
easily calculate the exponential in Eq.~39!:

exp$t@2~B1B̄!1zC1z21D̄#%511
etg(z)21

g~z!
uu&^g~z!u,

~43!

where
f

^g~z!uª2^bu2^b̄u1z^cu1z21^d̄u ~44!

and

g~z!ª^g~z!uu&. ~45!

Now take^vu and uw& to be the left eigenvector of2B2B̄

1C1D̄ dual to uu& and the right eigenvector of2B2B̄

1C1D̄ dual to ^su, respectively. One can normalize thes
so that

^vuu&51,
~46!

^suw&51.

Of course,̂ vu is orthogonal touw&. Then,

exp$t@2~B1B̄!1zC1z21D̄#%

5etg(z)uu&^vu1uw&^su1^g~z!uw&

3
etg(z)21

g~z!
uu&^su. ~47!

Acting this onNm(0), andnoting that

^suNm~0!51, ~48!

it is seen that

Nk~ t !5uw&^suNk~0!1
1

2p i (
m52`

` R dzzm2k21

3etg(z)uu&^vuNm~0!

5uw&1
1

2p i (
m52`

` R dzzm2k21etg(z)uu&^vuNm~0!,

~49!

or

^vuNk~ t !5
1

2p i (
m52`

` R dzzm2k21etg(z)uu&^vuNm~0!.

~50!

This is equivalent to Eq.~24!.

2. The case CÄpB, D̄ÄqB̄

Using Eq.~22!,

~12p!^suB5~12q!^suB̄50, ~51!

means thatp51 or ^suB50, andq51 or ^suB̄50. If ^su is
not the left null eigenvector ofB and B̄, thenp5q51. So
we will haveB5C andD̄5B̄. Now we use the definition of
A,

A bg
a 5Cb

a2Cg
a5(

l
Hbg

la ,
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A gb
a 5Cg

a2Cb
a5(

l
Hgb

la . ~52!

For aÞb and aÞg, all the terms in the right hand sid
summations in the above equations are reaction rates
should be non-negative, but the sum of the left hand side
zero. So

Cb
a5Cg

a5 f a for gÞaÞb. ~53!

All the elements of each row except the diagonal element
C ~or B) are the same. That is,

C5u f &^su1C8, ~54!

whereC8 is some diagonal matrix. The fact thatus& is a left
eigenvector ofC shows that it should be a left eigenvector
C8 as well, and this demandsC8 to be proportional to the
unit matrix. One can make the same arguments forB̄ andD̄.
So, after gauge transformation,

C5B5u1, D̄5B̄5v1. ~55!

Although the time evolution of average densities can be w
ten in terms ofB, C, B̄, and D̄, the HamiltonianH is not
uniquely be determined by these matrices. There exist dif
ent Hamiltonians which are equivalent, regarding one-po
functions:

(
l

Hbg
la5A bg

a 5u~db
a2dg

a!,

~56!

(
l

Hbg
al5Ābg

a 5v~dg
a2db

a!.

All the elements of thebb column of H are zero. Fora
Þb, the elements ofH satisfy

(
lÞa,b

Hab
la1Hab

aa1Hab
ba5u,

(
lÞa,b

Hab
lb1Hab

ab1Hab
bb52u,

~57!

(
lÞa,b

Hab
bl1Hab

ba1Hab
bb5v,

(
lÞa,b

Hab
al1Hab

aa1Hab
ab52v.

In general, these sets of equations have several solutions
for the one-species case the reaction rates are the follow

AB→H BA, L12

AA, u2L12

BB, v2L12, ~58!
nd
is

of

t-

r-
t

but
g:

BA→H AB, L21

AA, v2L21

BB, u2L21. ~59!

The above system, with no diffusion, was studied in@24#.
There, then-point functions were investigated. This solutio
can be generalized to the multispecies case. ForaÞb,

AaAb→H AbAa , Lab ,a,b51, . . . ,N

AaAa , u2Lab

AbAb , v2Lab . ~60!

The only constraint is the non-negativeness of the reac
rates:

u>Lab>0, v>Lab>0. ~61!

This model hasN(N21)12 free parameters. However, on
the two parametersu and v appear in the time evolution
equation of average densities:

^ṅi
a&52~u1v !^ni

a&1u^ni 21
a &1v^ni 11

a &. ~62!

As is seen, the dynamics of average densities of differ
particles decouple, and despite the complex interaction
the model, thê ṅi

a& ’s can be easily calculated. But in th
time evolution of two-point functionsLab’s appear as well.
So, although models with different exchange rates (Lab)
and the same initial conditions have the same average
sities, their two-point functions generally are not the sam

3. B,B̄,C,D commute

Generally, the gauge transformation do not preserve
commutation relation ofB andC ~and that ofB̄ andD̄). But
if B and C commute, there is a gauge transformation th
leaves the transformedB andC commuting. If we chooseu f &
to be a right eigenvector ofB andC dual to ^su, that is,

Bu f &5Cu f &5 f u f &, ~63!

thenB8ªB2u f &^su andC8ªC2u f &^su commute. If

^su f &5 f , ~64!

then^su timesB8 andC8 will be zero. So, ifB, C, B̄, andD̄
commute with each other, there exists a suitable gauge tr
formation that makes their eigenvalue corresponding to^su
zero, while they remain commuting:

^suB5^suC5^suB̄5^suD̄50. ~65!

Denote the matrix that simultaneously diagonalizes th
four matrices byU, diagonalized matrices by primes, an
their eigenvalues byba, ca, b̄a, and d̄a, respectively. We
have

^VuB85^VuC85^VuB̄85^VuD̄850,

^Vu5^suU. ~66!
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We takebN5cN5b̄N5d̄N50, and normalizêVu andU so
that

^Vu5~0 0 • • • 0 0! ~67!

and

(
a

Uab5dNb . ~68!

U will also diagonalize the exponential in Eq.~39!. So we
have

Nk8~ t !5
1

2p i (
m52`

` R dzzm2k21 exp@ t$2B82B̄81zC8

1z21D̄8%#N m8 ~0!, ~69!

where

N k8~ t !ªU21Nk~ t !. ~70!

The matrix in the argument of the exponential in Eq.~69! is
diagonal, so the integral can be easily calculated:

Iª 1

2p i R dzzm2k21 exp@ t~2ba2b̄a1zca1z21d̄a!#.

~71!

IntroducingwªA(d̄a/caz), one arrives at

IªS d̄a

ca D ~m2k!/2
e2t(ba1b̄a)

2p i R dwwm2k21 exp@Acad̄at

3~w1w21!#, ~72!

which can be written in terms of modified Bessel function

IªS d̄a

ca D ~m2k!/2

e2t(ba1b̄a)I k2m~2Acad̄at !. ~73!

Then,

Nk~ t !5 (
m52`

`

U diagH S d̄b

cb D ~m2k!/2

e2t(bb1b̄b)

3I k2m~2Acbd̄bt !J U21Nm~0!. ~74!

Note that the right-hand side of Eq.~73! is dk,m for a5N,
since theNth eigenvalue ofB, C, B̄, andD̄ is zero.

One can start with four special diagonal matrices and t
construct the Hamiltonians with different reaction-diffusio
rates. Not all diagonal matrices lead to physical stocha
models: negative reaction rates may be obtained. Cons
ing the large-time behavior of average number densities,
can show that

uRe~Acad̄a!u<Re~ba1b̄a!, ~75!

which also shows that
n

ic
er-
ne

Re~ba1b̄a!>0. ~76!

Now, we consider a special choice forU:

Ub
a5dN

a2~12dN
a !db

a . ~77!

Then

Bb
a5bb~db

a2dN
a !,

Cb
a5cb~db

a2dN
a !,

~78!
B̄b

a5b̄b~db
a2dN

a !,

D̄b
a5d̄b~db

a2dN
a !.

Now, consider

A bg
a 5(

l
Hbg

la52badg
a1cadb

a1~2bg1cb!dN
a . ~79!

For aÞg andaÞb,

(
l

Hbg
la>0, (

l
Hgb

la>0. ~80!

So, takingb,gÞN anda5N,

bg>cb. ~81!

The same reasoning is true forb̄g and d̄b:

b̄g>d̄b. ~82!

Here, too, as in the previous example, the above choices
B, C, B̄, andD̄ do not determineH uniquely. One particular
solution for the reaction rates is, foraÞN,

ANAa→H AaAN , LNa

AaAa , d̄a2LNa

ANAN , ba2LNa , ~83!

AaAN→H ANAa , LaN

AaAa , ca2LaN

ANAN , b̄a2LaN , ~84!

and, fora,bÞN,

AaAb→H AaAN , bb2ca2Lab

ANAb , b̄a2d̄b2Lab

ANAN , Lab . ~85!

For aÞb, the following reactions may also occur. Fora
,b

AaAb→H AbAa , ca

AbAb , 2ca1d̄b ~86!

and fora.b
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AaAb→H AbAa , d̄b

AaAa , ca2d̄b . ~87!

The constraint of non-negativeness of the reaction rates l
to

ca<db<cg , a,b,g,

0<Lab<bb2ca ,

Lab<b̄a2d̄b ,

0<LNa<d̄a , ~88!

0<LNa<ba ,

0<LaN<b̄a ,

0<LaN<ca .

4. Type-change invariance

SupposeB, C, B̄, andD̄ have the property

Bb1g
a1g5Bb

a , ~89!

and the same for the other three matrices. Note that the
dices of these matrices are defined periodically, so thaN
1a, as an index, is equivalent toa. This is in fact a specia
case of the commuting matrices discussed earlier. One
use Eq.~74!. To do so, one should know the simultaneo
eigenvectors ofB, C, B̄, and D̄, and their corresponding
eigenvalues. It is not difficult to see that the eigenvectors

Ub
a5

1

AN
expS i2pab

N
D . ~90!

The corresponding eigenvectors ofB, for example, are

bb5(
a

B0
a expS 2

i2pab

N D . ~91!

Finally, the matrix elements of the inverse ofU are

~U21!b
a5

1

AN
expS 2

i2pab

N
D . ~92!
n.

n,

ys
ds

n-

an

re

These can be put directly in Eq.~74!.

VI. LARGE-TIME BEHAVIOR OF AVERAGE DENSITIES

The large-time behavior of the system is deduced thro
a steepest-descent analysis of the formal solution~39!. One
should consider the eigenvalues and the eigenvectors o
z-dependent matrix

M ~z!ª2~B1B̄!1zC1z21D̄. ~93!

Denote the eigenvalues of this matrix byla(z). As for any
value ofz, the matrixM has^su as its left eigenvector corre
sponding to the eigenvalue zero, and it will have a rig
eigenvectoruw& dual to^su. uw& is z dependent, but one ca
normalize it so that

^suw~z!&51. ~94!

The fact thatN should not blow up att→` assures that the
real parts of the eigenvalues ofM (z) are nonpositive~at least
for uzu51). If all the other eigenvalues have negative re
parts, then att→` only uw& survives. That is,

Nk~`!5
1

2p i (
m

R dzzm2k21uw~z!&^suNm~0!5uw~1!&.

~95!

We have used̂ suNm(0)51. This could also be obtaine
directly, using the evolution equation~23!, by setting Ṅk
equal to zero and assumingNk independent ofk. So the final
state of the system is the eigenvector of2(B1B̄)1C1D̄,
corresponding to the eigenvalue zero.

To investigate the next-to-leading term att→`, consider
the other eigenvalues ofM (z). Suppose that atz5z0

ala is
stationary. There may be more than one point having
property. So we will have a set consisting ofz0a

a ’s. Each of
these points corresponds to a stationary eigenvaluel0a

a . We
choose thatz0a

a for which the corresponding eigenvalue h
the largest real part. Denote this point byz0, its correspond-
ing stationary eigenvalue byl0, and its corresponding righ
eigenvector byuv0&. The next-to-leading term inN is then

N k
(1);z0

2ketl0uv0&. ~96!

Note thatz0 is not necessarily a phase; its modulus may
different from 1.
.
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